
1


Analysis Methods for 
Hadron Colliders III 

Beate Heinemann 

UC Berkeley and Lawrence Berkeley National Laboratory 

TRIUMF Summer Institute, Vancouver, July 2009 



2


Outline 

• Lecture I: 
 Measuring a cross section  

•  focus on acceptance 

• Lecture II: 
 Searching for a new particle  

•  focus on backgrounds 

• Lecture III: 
 Continuation on Lecture II (Higgs boson search)  
 Measuring a property of a known particle 
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The Higgs Boson  
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Higgs Production: Tevatron and LHC 

dominant: gg→ H, subdominant: HW, HZ, Hqq!

LHC Tevatron 

σ
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Higgs Boson Decay 

• Depends on Mass 
• MH<130 GeV/c2: 

   bb dominant 
   WW and ττ subdominant 
   γγ small but useful 

• MH>130 GeV/c2: 
   WW dominant  
   ZZ cleanest 

_
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• Higgs mass reconstruction impossible 
due to two neutrinos in final state 

• Make use of spin correlations to 
suppress WW background: 

• Higgs is scalar: spin=0 
•  leptons in H → WW(*) → l+l-νν are 

collinear 
• Main background:  

• WW production 

H → WW(*) → l+l-νν  
_
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•  Event selection: 
  2 isolated e/µ : 

•  pT > 15, 10 GeV 
  Missing ET >20 GeV 
  Veto on 

•  Z resonance 
•  Energetic jets 

•  Main backgrounds 
  SM WW production 
  Top  
  Drell-Yan 
  Fake leptons 

•  Plot everything under the sun  
  to convince yourself you have the 

background right 

New result! HWW(*)l+l-νν (l=e,µ)
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Jets faking Electrons 
•  Jets can pass electron ID cuts,  

  Mostly due to  
•  early showering charged pions 
•  Conversions:π0→γγ→ee+X

•  Semileptonic b-decays 

  Difficult to model in MC 
•  Hard fragmentation 
•  Detailed simulation of calorimeter and 

tracking volume 
•  Measured in inclusive jet data at 

various ET thresholds 
  Prompt electron content negligible: 

•  Njet~10 billion at 50 GeV! 
  Fake rate per jet: 

  Typical uncertainties 50% 

Fa
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CDF ATLAS 

Loose cuts 5x10-4 5x10-3 

Tight cuts 1x10-4 1x10-5 
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Plot Everything Under the Sun.. 

•  Validates the background prediction 
  Very often these plots “don’t work” since there is some problem 
  Now plug all into sophisticated techniques! 
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 Data agree well with background hypothesis 
 S/B ~0.3 at high NN values  

NN Output 
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Higgs Cross Section Limit 

•  160 < mH < 170 GeV excluded at 95% C.L.  
•  Note that the limit is ~1σ better than expected 

•  For mH=120 GeV: σlimit /σSM = 2.8 
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Early Higgs Signals at LHC 
H→WW* (mH=170 GeV)


ATLAS 

LHC has about 4 times better  
signal / background than Tevatron 

CMS 
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LHC SM Higgs Discovery Potential 

5σ 

•  5σ discovery over full mass range 
with ~20 fb-1 

  Most challenging at low mass 
•  95% exclusion over full mass 

range with ~4 fb-1 



Conclusions on Searches 

• Background estimate most crucial aspect for 
searches 

• LHC has an amazing discovery potential 
 Supersymmetry already with ~100 pb-1 

• Also other high mass particles, e.g. 
• Z’, Extra Dimensions, 4th generation quarks, … 

 Higgs boson: 1-10 fb-1 

• Let’s hope that many exciting things will be 
found!!!  
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Measuring Properties  
of Particles 
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The W± Boson Mass 
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W Boson mass 

•  Real precision measurement:  
  LEP: MW=80.367±0.033 GeV/c2 
  Precision: 0.04% 

•  => Very challenging! 

•  Main measurement ingredients: 
  Lepton pT  
  Hadronic recoil parallel to lepton: u||  

•  Z→ll superb calibration sample: 
  but statistically limited: 

•  About a factor 10 less Z’s than W’s 
•  Most systematic uncertainties are related 

to size of Z sample 
  Will scale with 1/√NZ (=1/√L) 

See arXiv:0708.3642
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How to Extract the W Boson Mass 

• Uses “Template 
Method”: 
  Templates created from 

MC simulation for 
different mW 

  Fit to determine which 
template fits best 

 Minimal χ2 ⇒ W mass! 
• Transverse mass of 

lepton and Met 

mW=80.4 GeV

+1.6 GeV

- 1.6 GeV
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How to Extract the W Boson Mass 

•  Alternatively can fit to 
  Lepton pT or missing ET 

•  Sensitivity different to different systematics 
  Very powerful checks in this analysis: 

•  Electrons vs muons 
•  Z mass 
•  mT vs pT vs MET fits 

  The redundancy is the strength of this difficult high precision analysis 
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Lepton Momentum Scale 
•  Momentum scale: 

  Cosmic ray data used for detailed 
cell-by-cell calibration of CDF drift 
chamber 

  E/p of e+ and e- used to make 
further small corrections to p 
measurement 

  Peak position of overall E/p used to 
set electron energy scale 

•  Tail sensitive to passive material 
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Momentum/Energy Scale and Resolution 

•  Systematic uncertainty on momentum scale: 0.04% 

Υ→µµ


Z→µµ


Z→ee
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Hadronic Recoil Model 

• Hadronic recoil modeling 
  Tune data based on Z’s 
 Check on W’s 
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Systematic Uncertainties 

•  Overall uncertainty 60 MeV for both analyses 
  Careful treatment of correlations between them 

•  Dominated by stat. error (50 MeV) vs syst. (33 MeV) 

Limited by data 

statistics


Limited by data 

and theoretical

understanding
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W Boson Mass Result 

  New World average: MW=80399 ± 23 MeV 

  Ultimate Run 2 precision: ~15-20 MeV 
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MW, mtop and mHiggs 

•  Indirectly: mH<163 GeV@95%CL  
(caveat: is the measured top mass the pole mass?) 
• Directly: 114<mH<160 GeV or mH>170 GeV @95%CL  

(This all assumes that there is no new physics beyond the SM) 
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Measuring Properties of 
Supersymmetric Particles 

(in case they exist) 
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Spectacular SUSY Events (?)  

•  Long cascade decays via 
several SUSY particles 
  In classic models quite possible 

•  Would be a wonderful 
experimental challenge! 

  But of course very possible also 
that it does not happen 

•  If Nature is like this: 
  Need to try to reconstruct 

masses of all those particles 

•  Main method: 
  Measure “edges” 
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Spectacular SUSY Events (?)  
•  Long cascade decays via 

several SUSY particles, e.g. 

  In classic models quite possible 
•  Would be a wonderful 

experimental challenge! 
  But of course very possible also 

that it does not happen 
•  If Nature is like this: 

  Need to try to reconstruct 
masses of all those particles 

•  Main method: 
  Measure “edges” 

Only for opposite sign 
same-flavor (OSDF) 
leptons 
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Dilepton Edge Fit 

•  Background from different flavors subtracted 
  Removes random SUSY backgrounds, top backgrounds,.. 

•  Fit for dilepton edge 
  With many such edges one can maybe get a beginning of an 

understanding what is happening! 
  Different models look differently 

∑e+e-+µ+µ--e+µ--µ+e-


SU3
 SU1


ATLAS


1 fb-1


ATLAS


18 fb-1


See arXiv:0901.0512
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How well does this work? 

• Works reasonably well… 
• Can even try to extract high-level theory parameters 
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SUSY Parameters at GUT scale!?! 

• Depends if we understand 
our model well enough 

• Personally I am very 
skeptical that we can do 
this 
  But would be great to have 

that problem! 
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Conclusions on Measuring Properties 

• Several methods of extracting property of particle 
  Template method is widely used 
 Matrix Element technique extracts more information 
  For known shapes simple fits can also be done 

• Examples: 
 W boson mass (precision ~0.06%) 
  Top quark mass (precision ~0.7%) 
  SUSY particles masses (precision ~unknown) 

• Critical to understand detector calibration 
 Utilize known resonances 

•  I hope we will be able to measure properties of 
many new particles 
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Concluding Remarks 
Data are very precious 

• Treat them with the highest respect 
• Try to not jump to conclusions too fast  

 Data analysis is like detective work 
• Try to use all you can to understand them 

 Redundancy of detector  
•  tracker vs calorimeter etc. 

 Complementary physics processes 
•  W’s vs Z’s etc. 

 Monte Carlo tools and theoretical calculations 
• Above all: use your brain and your judgment 

This was my very personal view on the key issues 
of data analysis 
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Thanks, 

and lot’s of fun and luck  
for your analyses 



LHC Expectations: W mass 

•  Expect uncertainty of 150-250 MeV with 15 pb-1 

 Ultimately expected to improve upon Tevatron precision 
when detector well understood… 
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See arXiv:0901.0512




Measuring an Asymmetry 
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Asymmetries 

• Many important asymmetries have been 
measured, e.g. 
 Forward-backward asymmetry in Z’s: AFB  

• sensitive to photon/Z interference and new physics 

 W+/W- charge asymmetry: 
• Sensitive to parton distribution functions 

 B meson decay asymmetries 
• Sensitive to matter/anti-matter differences 

 …  
• Experimental advantage: 

 Many systematic uncertainties (partially) cancel  37




W Boson Charge Asymmetry: LHC 

•  W charge asymmetry 
arises due to more up-
quarks compared to 
down-quarks in proton 
 N(W+)/N(W-)≈1.5 

•  For √s=10 TeV 

 Depends on |η| 
 Sensitive to ratios 

of u and d-quarks 
densities 
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See EWK-09-003 and EWK-08-002 at

https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults




Event Selection 

• Note: 
 Different efficiencies for W+ and W- events (~10%) 
 Due to different kinematic acceptance   

• pT and η cuts 
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Backgrounds 

•  Background will generally 
have different charge 
asymmetry than signal  

•  Typical background: 
  ~10% 
 Need to determine 

asymmetry for 
backgrounds 

•  Define orthogonal 
unbiased selection to 
e.g. measure it for QCD 
jet background 
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QCD Background  

•  E.g. use region of poor isolation and 
low MET to develop background 
model 
  E.g. z>0.05 and Met<20 GeV 

•  Measure asymmetry for those events 
  Vary method to assess systematics 41


W->μν
 QCD jets




From Counting Events to A(η) 

• Note: 
 Need to know efficiencies as function of η 
 Neglected charge misidentification here 42


We measure:
 (after background 

subtraction)


Related to cross section: 


Finally we get:




Cross Section vs η 

• Precision as expected for 
10 pb-1 of LHC data 

• Experimental errors 
comparable to theory 
uncertainties 43




Systematic Uncertainties 

• Examples from similar measurement of CDF 
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In general similar to cross section 
Measurement 
•  beware that not everything cancels 
•  currently D0 and CDF disagree 

See http://www-cdf.fnal.gov/physics/ewk/2007/
WChargeAsym/W_Charge_Asymmetry.html
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The Top Quark Mass 
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Top Mass Measurement: tt→(blν)(bqq) 

•  4 jets, 1 lepton and missing ET 
  Which jet belongs to what? 
  Combinatorics! 

•  B-tagging helps: 
  2 b-tags =>2 combinations 
  1 b-tag   => 6 combinations 
  0 b-tags =>12 combinations 

•  Two Strategies: 
  Template method: 

•  Uses “best” combination 
•  Chi2 fit requires m(t)=m(t) 

  Matrix Element method: 
•  Uses all combinations 
•  Assign probability depending on 

kinematic consistency with top 
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Top Mass Determination 
•  Inputs: 

  Jet 4-vectors 
  Lepton 4-vector 
  Remaining transverse 

energy, pT,UE: 
•  pT,ν=-(pT,l+pT,UE+∑pT,jet) 

•  Constraints: 
  M(lv)=MW 
  M(qq)=MW 
  M(t)=M(t) 

•  Unknown: 
  Neutrino pz 

•  1 unknown, 3 constraints: 
  Overconstrained 
  Can measure M(t) for each 

event: mt
reco 

_

_


Selecting correct combination

20-50% of the time
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• Additionally, use W→jj mass resonance (Mjj) to 
measure the jet energy scale (JES)  uncertainty 

In-situ Measurement of JES 

Mjj 

Measurement of  JES scales directly with data statistics 

2D fit of  the invariant 
mass of  the non-b-jets 
and the top mass:  

JES∝ M(jj)- 80.4 GeV/c2    
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Top Mass Templates 

• Fit to those templates for  
  Top mass  
  Jet Energy Scale 
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Measurement of JES at LHC 

•  Large top samples 
 Clean W mass peak 

• Allow measurement of JES 
as function of Jet Energy 

• Can achieve 1% precision 
with 10 fb-1 

1 fb-1


10 fb-1
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Template Analysis Results on mtop 
•  Using 344 lepton+jets and 144 dilepton candidate events in 1.9 fb-1 
•  Using in-situ JES calibration results in factor four improvement on JES 

mtop = 171.9 ± 1.7 (stat.+JES) ± 1.0 = 171.6 ± 2.0 GeV/c2
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“Matrix Element Method” 
•  Construct probability density function as function of mtop for 

each event 
•  Multiply those probabilities of all events 
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Check you get the right answer 

•  Run “Pseudo-Experiments” on Monte Carlo to see if you get out the mass 
that was put in 
  Pretend MC is data and run analysis on it N times  

•  Non-trivial cross check given the complexity of the method 
  If not: derive “calibration curve” from slope and offset 
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 Matrix Element Top Mass Results 

DØ: 2.2 fb-1 CDF: 2.9 fb-1 
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Combining Mtop Results 

•  Excellent results in each 
channel 
  Dilepton 
  Lepton+jets 
  All-hadronic 

•  Combine them to improve 
precision 
  Include Run-I results 
  Account for correlations 

•  Uncertainty: 1.2 GeV 
 Dominated by systematic 

uncertainties 



LHC Perspectives 

• Precisions similar/better to Tevatron when 
detector understood with ~100 pb-1 
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